
1

An Iteratively Reweighted Norm Algorithm for
Minimization of Total Variation Functionals

Brendt Wohlberg* and Paul Rodrı́guez

EDICS: IMD-ANAL

Abstract— Total Variation (TV) regularization has become a
very popular method for a wide variety of image restoration
problems, including denoising and deconvolution. Recently, a
number of authors have noted the advantages, including superior
performance with certain non-Gaussian noise, of replacing the
standard !2 data fidelity term with an !1 norm. We propose a
simple but very flexible and computationally efficient method,
the Iteratively Reweighted Norm algorithm for solving the
generalized TV functional, which includes the !2-TV and and
!1-TV problems.

Index Terms— image restoration, inverse problem, regulariza-
tion, total variation

I. INTRODUCTION

Total Variation (TV) regularization has become a very pop-
ular method for a wide variety of image restoration problems,
including denoising and deconvolution [1], [2]. The standard
TV regularized solution of the inverse problem involving data
s and forward linear operator K (the identity in the case of
denoising, and a convolution for a deconvolution problem, for
example) is the minimum of the functional
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where we employ the following notation:
• the p-norm of vector u is denoted by ‖u‖p,
• scalar operations applied to a vector are considered to be

applied element-wise, so that, for example, u = v2 ⇒
uk = v2

k and u =
√

v ⇒ uk =
√

vk, and
• horizontal and vertical discrete derivative operators are

denoted by Dx and Dy respectively.
While a number of algorithms [3], [4] have been proposed to
solve this optimization problem, it remains a computationally
expensive task which can be prohibitively costly for large
problems and non-sparse forward operator K.

Recently, the modified TV functional with an l1 data fidelity
term
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has attracted attention [5], [6] due to a number of advantages,
including superior performance with non-Gaussian noise such
as salt and pepper noise, and applications in cDNA microarray
image processing [7], illumination normalization [8], and
cartoon-texture decomposition [9]. The standard approaches
to solving problem (1) are not effective for problem (2), for
which algorithm development is not well advanced [6].

We propose a simple but computationally efficient and very
flexible method for solving the generalized TV functional
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for p ≥ 1 and q ≥ 1, including both problems (1) and (2).

II. ITERATIVELY REWEIGHTED NORM APPROACH

Our Iteratively Reweighted Norm (IRN) approach is moti-
vated by the Iteratively Reweighted Least Squares (IRLS) [10]
algorithm for solving the minimum lp norm problem

min
u
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(4)

by solving a sequence of minimum weighted l2 norm prob-
lems, and is also closely related to the Iterative Weighted
Norm Minimization algorithms [11], [12] for sparse signal
decompositions.

These methods approximate the lp norm of u
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with diagonal weight matrix

W = (2/p) diag
(
|u|p−2

)
. (5)

To simplify somewhat, this approximation may be used to
minimize the norm because, for the same choice of W (and
u such that uk &= 0 ∀k) we have

∇u
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so that both expressions have the same value and tangent
direction. A detailed discussion of convergence issues for the
IRLS problem may be found in [13], and we are currently
preparing a paper including convergence details for our IRN
method.
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A. Data Fidelity Term

The data fidelity term of Equation (3) has the form of the
IRLS functional in Equation (4), and is handled in the same
way, representing
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with iteratively updated weights WF . Since the choice defined
by Equation (5) gives infinite weights for p < 2 and uk = 0,
we set

WF = diag
(

2
p
fF (Ku− s)

)

where
fF (x) =

{
|x|p−2 if |x| > εF

εp−2
F if |x| ≤ εF ,

for some small εF , a common approach for IRLS algorithms
[10].

B. Regularization Term

It is not quite as obvious how to express the TV regular-
ization term from Equation (3) as a weighted l2 norm. Given
vectors u and v we have (using block-matrix notation)
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We therefore define the operator D and weights W̃

D =
(
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Dy

)
W̃ =

(
W 0
0 W

)

so that ‖W̃R
1/2
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R Dyu‖22 with
weights defined by
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2
q
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)

gives the desired term. (Note that this is not the separable
approximation, as in [14], for example, which is often used.)

As in the case of the data fidelity term, care needs to be
taken when q < 2 and uk = 0. We define

fR(x) =
{

|x|(q−2)/2 if |x| > εR

0 if |x| ≤ εR,

for some small εR, and set
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(

2
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(
(Dxu)2 + (Dyv)2

))
.

Note that fR sets values smaller than the threshold, εR, to
zero, as opposed to fF , which sets values smaller than the
threshold, εF , to εp−2

F . Our motivation for this choice is that a

region with very small or zero gradient should be allowed to
have zero contribution to the regularization term, rather than
be clamped to some minimum value. In practice, however, we
have found that this choice does not give significantly different
results than the standard IRLS approach represented by fF .

C. General Algorithm

Combining the terms described in Sections II-A and II-B,
we have the functional
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which, it is worth noting, may be expressed as
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which has the same form as an IRLS problem, but differs in
the computation of W̃R

1/2
. The minimum of this functional

is
u =

(
KT WF K + λDT W̃RD

)−1
KT W 1/2

F s, (6)

and the resulting algorithm consists of the following steps:
Initialize

u0 =
(
KT K + λDT D

)−1
KT s

Iterate

WF,k = diag
(

2
p
fF (Kuk−1 − s)

)

WR,k = diag
(
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q
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(
KT WF,kK + λDT

x WR,kDx

+λDT
y WR,kDy

)−1
KT W 1/2

F,k s

The matrix inversion is achieved using the Conjugate Gradient
(CG) method. We have found that a significant speed improve-
ment may be achieved by starting with a high CG tolerance
which is decreased with each main iteration until the final
desired value is reached. (We are currently preparing a paper
which addresses convergence issues in detail.)

III. l1 DATA FIDELITY

In the remainder of this paper we shall restrict our attention
to the l1-TV case (p = 1, q = 1), but note that this flexible
approach is capable of efficiently solving other cases as well,
including the standard l2-TV case (p = 2, q = 1) where we
have found it to be slightly slower than the lagged diffusivity
algorithm [3], to which it is related.

For the results reported here, operators Dx and Dy were de-
fined by applying the same one-dimensional discrete derivative
along image rows and columns respectively. Applied to vector
u ∈ RN , this discrete derivative was computed as uk − uk+1

for the derivative at index k ∈ {0, 1, . . . , N − 2}, and as
(uN−3−8uN−2)/12 for the derivative at index N −1. Values
in the ranges 10−2 to 10−4 and 10−4 to 10−8 were used for
constants εF and εR respectively. All program run times were
obtained on a 2.8GHz Intel Xeon processor.
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A. Denoising
We first consider the denoising problem corresponding to

the choice K = I . A comparison of l2 TV (computed using
the lagged diffusivity algorithm) and l1 TV (computed using
the IRN method) denoising performance for speckle noise is
displayed in Figure 1. (The original image in Figure 1(a) was
scaled by a factor of 1/255 to give a nominal pixel value range
of 0 to 1.) Note the very significantly superior performance of
l1 TV denoising for this type of noise. In the l2 TV case, edges
are better preserved when using a smaller weighting, λ, to the
regularization term, but at the expense of noise reduction and
SNR.

Direct application of equation (6) for l1 TV denoising
is significantly slower than l2 TV via lagged diffusivity as
a consequence of the significantly greater number of CG
iterations required to solved the system for each main iteration.
When K = I , however, we may apply the substitution ũ =
W 1/2

F u, giving

T (ũ) =
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with solution

ũ =
(
I + λW−1/2

F DT W̃RDW−1/2
F

)−1
W 1/2

F s.

Applying this modification to the general algorithm results in a
significant reduction in the required number of CG iterations,
a comparison of which is provided in Figure 2. The run times
for the lagged diffusivity, and the direct and indirect IRN
algorithms were 4.2s, 41.1s, and 10.8s respectively.
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Fig. 2. A comparison of CG iterations for lagged diffusivity, and the direct
and indirect IRN algorithms for denoising.

B. Deconvolution
We apply the IRN algorithm to the problem of deconvolu-

tion of an image convolved by a separable smoothing filter
having 9 taps and approximating a Gaussian with standard
deviation of 2.0. In this case K is the corresponding linear
operator, and the substitution applied in the previous section
is no longer possible. We constructed a test image by con-
volving the image in Figure 1(a) by the smoothing kernel,

and adding 5% speckle noise, giving an image with an SNR
of 3.4dB. Comparing the performance of l2 TV (computed
using the lagged diffusivity algorithm) and l1 TV (computed
using the IRN method) deconvolution, we obtain a 12.2dB
reconstruction in 14.2s and a 14.4dB reconstruction in 38.6s
respectively. A comparison of the numbers of CG iterations
required by each method is provided in Figure 3.
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Fig. 3. A comparison of CG iterations for lagged diffusivity and the IRN
algorithms for deconvolution.

IV. CONCLUSIONS

The Iterative Reweighted Norm (IRN) approach provides
a simple but computationally efficient method for TV regu-
larized optimization problems, including both denoising and
those such as deconvolution having a linear operator in
the data fidelity term. This framework is very flexible, and
can be applied to regularized inversions with a wide vari-
ety of norms for the data fidelity and regularization terms,
including the standard l2 TV, and more recently proposed
l1 TV formulations. This method provides a significantly
faster algorithm for the l1 TV formulation than any other
algorithm of which we are aware. We are currently working
on developing preconditioning strategies to further improve the
speed by reducing the number of CG iterations required, and
have already obtained a factor of two improvement over the
best denoising run time reported in Section III-A by using a
Jacobi line relaxation preconditioner [15, Chapter 7, pp. 123].
A software implementation [16] is available under an open-
source license.
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